Conservation Agricultural Management to Sequester Soil Organic Carbon

Alan J.
Franzluebbers
Ecologist

Watkinsville GA

Soil Organic Matter

Ecosystem services

Management Approaches

Focus on maximizing carbon input

- ✓ Plant selection
 - Species, cultivar, variety
 - Growth habit (perennial / annual)
 - Rotation sequence
 - Biomass energy crops
- ✓ Tillage
 - Type
 - Frequency

- Pest control
- Crop / livestock systems

- Rate, timing, placement
- Organic amendments

ARS Image Number K5141-4

Management Approaches

Focus on minimizing carbon loss from soil

- Reducing soil disturbance
 - Less intensive tillage
 - Controlling erosion
- ✓ Utilizing available soil water
 - Promotes optimum plant growth
 - Reduces soil microbial activity
- ✓ Maintaining surface residue cover
 - Increased plant water use and production
 - More fungal dominance in soil

ARS Image Number K7520-2

Conservation agriculture

Key components

- ✓ Minimal soil disturbance
- ✓ Continuous plant and/or residue cover
- Diversified crop rotations

To avoid soil organic matter loss from erosion and microbial decomposition

Crop residue distribution and the soil environment

Cropping system inputs

More intensive (productive) systems have greater potential for C input

Depth distribution of soil organic C (SOC)

From Schnabel et al. (2001) Ch. 12, Pot. U.S. Grazing Lands Sequester C, Lewis Publ.

Soil-profile distribution of soil organic C

Carbon Content (Mg ha ⁻¹) PT NT			
13.6 27.9 42.8	<< << <		
43.9	>	33.3	
18.2		16.7	
12.8		12.2	

Cumulative
Carbon
Sequestration
Rate
(Mg/ha/yr)
0.32
0.62
0.81
0.44
0.38
0.36

Replicated experiment Indiana – SiCL Typic Haplaquoll 28-yr study Soil (0-30 cm) 84.1 < 107.0 Soil (0-100 cm) 159.2 < 169.3 Depth of sampling can be very important

Pasture management

Establishment of bermudagrass pasture following long-term cropping in Georgia USA (16 °C, 1250 mm)

Soil Organic Carbon (Mg ha⁻¹)

Soil C sequestration (Mg ha⁻¹ yr⁻¹) (0-5 yr):

Hayed

0.30

Unharvested 0.65

Grazed 1.40

Perennial grass important to control erosion and accumulate SOC

Cover cropping

Photos of 2 no-tillage systems in Virginia USA

Review of Soil Organic C Sequestration in the Southeastern USA

0.28 ± 0.44 Mg C/ha/yr (without cover cropping)

0.53 ± 0.45 Mg C/ha/yr (with cover cropping)

No-tillage cropping needs high-residue producing cropping systems (e.g. cover cropping) to be most effective

Crop residue harvest

At end of 7 years

Response		Silage Crop Removal		
0-20-cm depth	Initially	0.5 yr ⁻¹		1-2 yr ⁻¹
Bulk density (Mg m ⁻³)	1.43	1.37	ns	1.39
Macroaggregate stability (g g ⁻¹)	0.74	0.87	*	0.81
Soil organic C (mg g ⁻¹)	11.7	14.3	*	12.5
Crop residue harvest can have negative impacts on soil C and quality		Low Intensity		 High Intensity

On-farm research
North Carolina Piedmont
Corn silage each year vs corn silage less often

Franzluebbers and Brock (2007) Soil Till. Res. 93:126-137

Animal manure application

(26 °C, 440 mm)

Pearl millet—wheat

Data from Gupta et al. (1992) Arid Soil Res. Rehabil. 6:243-251

Animal manure application

Percentage of carbon applied as manure retained in soil (review of literature in 2001)

Temperate or frigid regions (23 ± 15%)

Thermic regions $(7 \pm 5\%)$

Moist regions (8 \pm 4%)

Dry regions (11 + 14%)

Regional controls on soil C sequestration need to be explored in greater detail

Green manuring

At the end of 12 years of Sesbania green manuring in India (24 °C, 715 mm) (Singh et al., 2007; Soil Tillage Res. 94:229-238),

Soil organic C sequestration was 0.09 ± 0.03 Mg C ha⁻¹ yr⁻¹

At the end of 13 years of wheat/soybean—maize cropping with and without vetch as a green-manure cover crop in southern Brazil (21 °C, 1740 mm) (Sisti

et al., 2004; Soil Tillage Res. 76:39-58):

	Soil organic C Change
Tillage system	(Mg C ha ⁻¹ yr ⁻¹)

Conventional	-0.30 <u>+</u> 0.15
Zero tillage	0.66 + 0.26

Carbon input from biological N fixation and minimal disturbance best

Photo by Bob Bugg, www.ucdavis.edu

Nitrogen fertilization

Therefore, soil carbon sequestration needs to be evaluated with a systemwide approach that includes all costs and benefits

System-wide accounting is a formidable challenge!

Crop type and sequence

Change in Soil Organic Carbon during 18 Years (Mg C ha⁻¹ yr⁻¹)

	0-7.5 cm depth	0-30 cm depth
Continuous corn (C) or sorghum (S)	-0.04	-0.23
Continuous soybean (SB)	-0.06	-0.30
2-yr rotation (C or S – SB)	-0.02	-0.17
4-yr rotation (O/CI – C – SB – S)	0.05	-0.04

Importance of (1) type and (2) amount of C input from crop residues

Mead NE Sharpsburg silty clay loam Sampled in Years 0, 8, 14, 18

Nitrous Oxide Emission

Crop type and sequence

Emission (kg N₂O-N ha⁻¹)

	Crop		
Crop rotation	Corn	Soybean	Wheat
Monoculture	2.62 <u>+</u> 1.82	0.84 <u>+</u> 0.52	0.51 <u>+</u> 0.15
CO ₂ equivalence (Mg C ha ⁻¹	yr ⁻¹) 0.33	0.11	0.06
Corn/soybean	1.34 <u>+</u> 0.52	0.70 <u>+</u> 0.43	_
	0.17	0.09	
Corn/soybean/wheat	1.64 <u>+</u> 0.76	0.73 <u>+</u> 0.24	0.72 <u>+</u> 0.33
	0.21	0.09	0.09

Woodslee ON
Brookston clay loam
In Years 2, 3, and 4
Fertilizer – 170 kg N/ha corn,
83 kg N/ha wheat,
none for soybean

Importance of (1) N fertilizer rate, (2) type and amount of residue from previous crop, and (3) residual N

Data from Drury et al. (2008) Can. J. Soil Sci. 88:163-174

Nitrous Oxide Emission

Cropping, tillage, and fertilization

← All important

Emission (kg N₂O-N ha⁻¹)

Condition	Annual crops / fall incorporation	Annual crops / not incorporated	Perennial crops / not incorporated
Winter/spring (n= 6-10)	2.41 <u>+</u> 1.79	1.19 <u>+</u> 0.79	0.29 <u>+</u> 0.39

CO₂ equivalence (Mg C ha⁻¹ yr⁻¹) 0.31

0.15

0.04

Condition	Moldboard plow	No tillage
Tillage (n=15)	1.60 <u>+</u> 3.16	1.96 <u>+</u> 4.66

0.20

0.25

Condition	- N fertilizer	+ N fertilizer
Annual crops (n=14-57)	1.53 <u>+</u> 1.00	2.82 <u>+</u> 2.78
Perennial crops (n=6-9)	0.16 <u>+</u> 0.21	0.62 <u>+</u> 1.10

0.19

0.36

0.02

0.08

Review of eastern Canada studies

Data from Gregorich et al. (2005) Soil Till. Res. 83:53-72

Nitrous Oxide Emission

Interaction of tillage with soil type

USA

Data from Rochette (2008) Soil Till. Res. 101:97-100

Summary

Soil organic carbon can be sequestered with adoption of conservation agricultural practices

- ✓ Enhanced soil fertility and soil quality
- ✓ Mitigation of greenhouse gas emissions
- ✓ Soil surface change is most notable
- ✓ Long-term changes are most scientifically defensible

Acknowledgements

Funding

Agricultural Research Service (ARS)

US-Department of Energy Madison County Cattleman's Association

USDA-National Research Initiative – Soil Processes

Cotton Incorporated
Georgia Commodity
Commission for Corn
The Organic Center
ARS GRACEnet team

Contact:

Alan J. Franzluebbers
USDA – Agricultural Research Service
1420 Experiment Station Road
Watkinsville GA 30677 USA

Tel: 1-706-769-5631

Fax: 1-706-769-8962

Email:

alan.franzluebbers@ars.usda.gov

http://www.ars.usda.gov/main/site main.htm?modecode = 66-12-09-00